Monday, February 5, 2018

Sensori-Motor Grounding of Surface Properties - an Exercise Trace of the Thoughts and Tree of Questions by Todor from 2011 in AGI List

After the selected emails from 2012 where I discussed generalization and the real meaning of "invariance" in 3D, I'm sharing another selected letter from the AGI list on general intelligence and sensory-motor grounding and its connection to symbolic/abstract representation. The "glue" of this to a real system is the specific processing environment, which applies the sensori-motor mapping and gradually traverses the possible actions ("affordances") within a specific input space (a universe, an environment) and maps them to the sensori data hierarchically with incremental complexity. It should gradually increase for example the number and the range - e.g. involving more modalities of input and output (action), wider range in space and time - of the parameters defining a particular current "highest complexity" conception, which in the example below are eventually represented as words ("a house", "a surface", ...).

The system's "motor" should be "ignited" to explore and the exploration should generate the higher level representations out of the simple sensory inputs like the ones explained below.

Note that the learning - the inductive, discovery - process starts from the end of this "trace of the thoughts". The reasoning was to show that it is possible and even easy/obvious to introspectively trace it from the general conceptions down to the specific and how "low complexity" these abstractions actually were.

See also:

Todor's: "Chairs, Buildings, Caricatures, 3D-Reconstruction..." and that semantic analysis exercise back from March 2004 Semantic analysis ...

Kazachenko's "Cognitive Algorithm" which claims to incrementally add "new variables".

from Todor Arnaudov twenkid @ ...
date Sun, Sep 11, 2011 at 3:12 AM
subject Re: [agi] The NLP Researchers cannot understand language. Computers could. Speech recognition plateau, or What's wrong with Natural Language Processing? Part 3
mailed-by (....)

IMHO sensorimotor approach has definitely more *general* input and output - just "raw" numbers in a coordinate system, the minimum overloaded semantics.

[Compared to "purely symbolic". Note that sensori-motor doesn't exclude symbolic - this is where it converges after building a sufficiently high or long hierarchy (inter-modal, many processing stages, building an explicit discrete dictionary of patterns/symbols) and when it aims at "generality", "compression" or partially arbitrary point of view of the evaluator who's deciding whether something is "symbolic". The way sensori-motor data is processed may also be represented "symbolically", "mathematically" (all code in a computer is supposed to be). The "not symbolic" sense is that it's aimed to be capable of mapping the structure of the emerging conceptions, correlations, "patterns" ("symbols"...) to a chain or a network, or a system of discoveries and correlations within a spatio-temporal domain in the "general" "raw sensory input" from the environment, or one that can be mapped to such input. On the other hand the "purely symbolic" combinations have no explicit connection to that kind of "most general" "raw input". Note, 7.1.2018]
That way the system has higher resolution of perception and causality/control (my terms), which is how close the output/input can be recovered to the lowest laws of physics/properties of the environment where the system acts/interacts.

I think "fluidity"/"smoothness" that Mike talks about is related to the gradual steps in resolution of generalization and detail of patterns which is possible if your start with the highest available sensory resolution and gradually abstract details while keeping relevant details at relevant levels of abstraction, and using them on demand when you need them to maximize match/precision/generality. When system starts from too high an abstraction, most of the details are gone.

[However, that's not that bad by default, because what remains is the most relevant - the spaces of the affordances are minimal and easily searchable in full, even introspectively. See below. Note, 5.2.2018]

BTW, I did this little exercise to trace what really some concepts mean:

[Starting randomly from some perception or ideas, thoughts and then the "Trace of the thoughts" process should converge down to the basic sensori-motor records and interactions from which the linguistic and abstract concepts have emerged and how.]...

What is a house?
- has (door, windows, chairs, ... ) /

What is a door?

has(...)... //I am lazy here, skip to few lines below...

is (wood, metal, ...)

What is wood?

is(material, ...)

What is material?

What is surface?

What are material properties?

-- Visual, tactile; weight (force); size (visual, tactile-temporal, ...)

has(surface, ...)

is(smooth, rough, sharp; polished...)

What are surface properties? //An exercise on the fly

- Tactile sensory input records (not generalized, exact records)

- Visual sensory input -- texture, reflection (that's more generalized, complex transformations from environmental images)

- Visual sensory input in time -- water spilled on the surface is being absorbed (visual changes), or it forms pools

-- How absorption is learned at first?

---- Records of inputs, when water [was] spilled, the appearance of the surface changes, color gets darker (e.g. wool)

-- How not absorbing surface is discovered?

---- Records of inputs, when water spilled, appearance of the surface changes; pool forms
------  [pools are] changes in brightness, new edges in the visual data [which are] marking the end of the pools

-- How is [it] learnt that the edges of the pools are edges of water?
---- [By] Records of tactile inputs -- sliding a finger on the surface until it touches the edge, the finger gets wet

-- What is "wet"?

---- Tactile/Thermal/Proprioception/Temporal records of sensory input:

---- changing coordinates of the finger

---- finger was "dry"

---- when touching the edge:

------ decrease in temperature of the finger [is] detected

-- when [the "wet"] finger touches another finger, ... or other location, thermal sensor indicates decrease of other's temperature as well

-- when [the] finger slides on the surface when wet, it feels "smoother" than when "dry"

[What is "smoother"?]

-- "Smoother" is - Temporal (speed), proprioception + others

-- The same force applied yields to faster spatial speed [that maps to "lower friction"]

[What is "faster [higher] speed"?]

-- "Faster"[higher] speed is:

---- [When] The ratio of spatial differences between two series of two adjacent samples is in favor of the faster.

-- The friction is lower than before touching the edge of the pool.

[What is "friction"?]

-- Friction is:

-- Intensity of pressure of receptor, located in the finger.

Compared to the pressure recorded from other fingers, the finger which is being
 sliding measures higher pressure than the other fingers


So yes, it seems we can define it with NL [Natural Language], but eventually it all goes back down to parameters of the receptors -- which is how it got up first. Also we do understand NL definitions, because we *got* general intelligence.

An AGI baby doesn't need to have defined "wet" as "lower temperature" etc. -- it just touches, slides a finger etc. keep the record, and generalize on it.

Then it associates it with the word "wet" which "adults" w (....)

--- THE END ---